

IoT Enabled Environmental Monitoring for Air Quality Assessment Climate Change Adaptation and Pollution Control

G. Mahendran, S. Murugeswari, S. Praveen
Samuel Washburn
Syed Ammal Engineering College

IoT Enabled Environmental Monitoring for Air Quality Assessment Climate Change Adaptation and Pollution Control

¹G. Mahendran, Professor, Department of ECE, Syed Ammal Engineering College, Ramanathapuram. gmahendran@syedengg.ac.in

²S. Murugeswari, Associate Professor, Department of Biomedical Engineering, Syed Ammal Engineering College, Ramanathapuram. gmahendran@syedengg.ac.in

³S. Praveen Samuel Washburn, Assistant Professor, Department of ECE, Syed Ammal Engineering College, Ramanathapuram. praveensamuel@syedengg.ac.in

Abstract

The increasing concerns surrounding air quality and its profound impact on public health and the environment have driven the need for more effective pollution control measures. The advent of Internet of Things (IoT) technologies has revolutionized air quality management systems, enabling real-time monitoring, data-driven decision-making, and enhanced public participation. This chapter explores the pivotal role of IoT in air quality assessment, focusing on its applications in emissions monitoring, pollution control, and climate change adaptation. It highlights the integration of IoT-driven solutions with predictive analytics, smart transportation, and industrial emissions management, offering new avenues for sustainable urban development. Moreover, the chapter emphasizes the importance of public awareness and community involvement through IoT-based air quality monitoring, fostering greater transparency and accountability in environmental governance. By examining case studies, technological advancements, and future prospects, this chapter provides a comprehensive framework for understanding how IoT can reshape air quality management and contribute to a healthier, more sustainable world.

Keywords: IoT, Air Quality Monitoring, Pollution Control, Emissions Management, Predictive Analytics, Climate Change Adaptation.

Introduction

Air pollution has become one of the most critical global challenges in recent decades, significantly impacting human health, ecosystems, and the climate [1]. With rapid urbanization, industrialization, and increased vehicular emissions, the levels of pollutants in the air have risen sharply, posing a direct threat to air quality [2]. Poor air quality is linked to a range of respiratory and cardiovascular diseases, premature deaths, and other health complications [3]. Air pollution contributes to environmental degradation, climate change, and the loss of biodiversity [4]. Given the urgency of addressing these issues, traditional air quality monitoring systems, which often suffer from limited coverage and delayed reporting, are proving inadequate. In this context, IoT-based air quality management systems offer an innovative and effective solution for real-time monitoring and efficient pollution control [5].

The integration of the Internet of Things (IoT) into air quality management represents a paradigm shift in how environmental data is collected, analyzed, and acted upon [6]. IoT systems consist of a network of interconnected sensors that continuously monitor environmental parameters such as particulate matter, nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone [7]. These systems provide real-time data, enabling local authorities, industries, and the public to access up-to-date information on air quality [8]. This enables rapid response to pollution levels, ensuring timely interventions to protect public health and the environment [9]. IoT technologies enable predictive analytics, which can anticipate pollution events and support preemptive measures [10].

One of the significant advantages of IoT-based systems is their ability to enhance public awareness and community involvement in air quality management [11]. With IoT-powered air quality sensors placed in strategic locations across cities, real-time pollution data can be easily accessed through mobile applications and online platforms [12]. These systems allow individuals to monitor the air quality in their surroundings, empowering them to make informed decisions regarding their health and outdoor activities. In addition, the transparent nature of these systems fosters greater public engagement in environmental issues, promoting more proactive attitudes toward pollution reduction. This enhanced awareness also drives demand for cleaner policies and practices, encouraging both local authorities and industries to adopt more sustainable operations [13].

IoT technologies are also transforming industrial emissions monitoring and control. Factories, power plants, and other industrial facilities are among the largest contributors to air pollution [14]. Traditional emissions monitoring methods often rely on periodic checks, which can be inaccurate or too infrequent to capture peak pollution levels. IoT-based solutions, however, offer continuous, real-time monitoring of emissions from industrial sources [15]. By integrating sensors directly into industrial operations, these systems can detect fluctuations in pollutant levels and identify sources of excessive emissions. This data can be used to optimize processes, reduce emissions, and ensure compliance with environmental regulations. Furthermore, IoT-powered systems enable industries to adopt more sustainable practices, such as energy optimization and waste reduction, contributing to both pollution control and cost savings [16].